Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661718

RESUMO

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Assuntos
Comunicação Celular , Quimiocina CCL3 , Células Matadoras Naturais , Muromegalovirus , Biossíntese de Proteínas , Transcrição Gênica , Animais , Camundongos , Muromegalovirus/fisiologia , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Genes Reporter , Camundongos Endogâmicos C57BL , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/genética , Camundongos Transgênicos , Interferon Tipo I/metabolismo , Transdução de Sinais
2.
Kidney Int ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458475

RESUMO

Three-dimensional (3D) imaging has advanced basic research and clinical medicine. However, limited resolution and imperfections of real-world 3D image material often preclude algorithmic image analysis. Here, we present a methodologic framework for such imaging and analysis for functional and spatial relations in experimental nephritis. First, optical tissue-clearing protocols were optimized to preserve fluorescence signals for light sheet fluorescence microscopy and compensated attenuation effects using adjustable 3D correction fields. Next, we adapted the fast marching algorithm to conduct backtracking in 3D environments and developed a tool to determine local concentrations of extractable objects. As a proof-of-concept application, we used this framework to determine in a glomerulonephritis model the individual proteinuria and periglomerular immune cell infiltration for all glomeruli of half a mouse kidney. A correlation between these parameters surprisingly did not support the intuitional assumption that the most inflamed glomeruli are the most proteinuric. Instead, the spatial density of adjacent glomeruli positively correlated with the proteinuria of a given glomerulus. Because proteinuric glomeruli appear clustered, this suggests that the exact location of a kidney biopsy may affect the observed severity of glomerular damage. Thus, our algorithmic pipeline described here allows analysis of various parameters of various organs composed of functional subunits, such as the kidney, and can theoretically be adapted to processing other image modalities.

3.
Front Immunol ; 15: 1338499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348028

RESUMO

Introduction: Prophylactic vaccines generate strong and durable immunity to avoid future infections, whereas post-exposure vaccinations are intended to establish rapid protection against already ongoing infections. Antiviral cytotoxic CD8+ T cells (CTL) are activated by dendritic cells (DCs), which themselves must be activated by adjuvants to express costimulatory molecules and so-called signal 0-chemokines that attract naive CTL to the DCs. Hypothesis: Here we asked whether a vaccination protocol that combines two adjuvants, a toll-like receptor ligand (TLR) and a natural killer T cell activator, to induce two signal 0 chemokines, synergistically accelerates CTL activation. Methods: We used a well-characterized vaccination model based on the model antigen ovalbumin, the TLR9 ligand CpG and the NKT cell ligand α-galactosylceramide to induce signal 0-chemokines. Exploiting this vaccination model, we studied detailed T cell kinetics and T cell profiling in different in vivo mouse models of viral infection. Results: We found that CTL induced by both adjuvants obtained a head-start that allowed them to functionally differentiate further and generate higher numbers of protective CTL 1-2 days earlier. Such signal 0-optimized post-exposure vaccination hastened clearance of experimental adenovirus and cytomegalovirus infections. Conclusion: Our findings show that signal 0 chemokine-inducing adjuvant combinations gain time in the race against rapidly replicating microbes, which may be especially useful in post-exposure vaccination settings during viral epi/pandemics.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Camundongos , Animais , Ligantes , Quimiocinas , Adjuvantes Imunológicos/farmacologia , Vacinação/métodos
4.
J Immunol ; 212(1): 35-42, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019126

RESUMO

NKT cells are unconventional T cells whose biological role is incompletely understood. Similar to TH cells, activated NKT cells can cause dendritic cell (DC) maturation, which is required for effective CTL responses. However, it is unclear whether and how NKT cells affect CTLs downstream of the DC maturation phase. This is partially due to the lack of techniques to conditionally deplete NKT cells in vivo. To overcome this problem, we have developed two approaches for this purpose in mice: the first is based on mixed bone marrow chimeras where Jα18 knockout and depletable CD90 congenic bone marrow is combined, and the second used PLZFCre × iDTR bone marrow chimeras, which target innate-like T cells. Using these tools, we found that NKT cell depletion at 20 h, that is, after initial DC activation, did not render CTLs helpless, as CD40L signaling by non-NKT cells sufficed. Instead, NKT cell depletion even augmented CD8 T cell expansion and cytotoxicity by mechanisms distinct from reduced STAT6 signaling. These findings revealed a negative feedback loop by which NKT cells control CTL cross-priming downstream of DC maturation. The techniques described in this study expand the toolbox to study NKT cells and other unconventional T cell subsets in vivo and uncovered a hidden immunoregulatory mechanism.


Assuntos
Apresentação Cruzada , Células T Matadoras Naturais , Camundongos , Animais , Retroalimentação , Linfócitos T Citotóxicos , Camundongos Knockout , Células Dendríticas , Camundongos Endogâmicos C57BL
5.
Nat Commun ; 14(1): 7372, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968302

RESUMO

Mucosal-associated invariant T (MAIT) cells have been implicated in various inflammatory diseases of barrier organs, but so far, their role in kidney disease is unclear. Here we report that MAIT cells that recognize their prototypical ligand, the vitamin B2 intermediate 5-OP-RU presented by MR1, reside in human and mouse kidneys. Single cell RNAseq analysis reveals several intrarenal MAIT subsets, and one, carrying the genetic fingerprint of tissue-resident MAIT17 cells, is activated and expanded in a murine model of crescentic glomerulonephritis (cGN). An equivalent subset is also present in kidney biopsies of patients with anti-neutrophil cytoplasmatic antibody (ANCA)-associated cGN. MAIT cell-deficient MR1 mice show aggravated disease, whereas B6-MAITCAST mice, harboring higher MAIT cell numbers, are protected from cGN. The expanded MAIT17 cells express anti-inflammatory mediators known to suppress cGN, such as CTLA-4, PD-1, and TGF-ß. Interactome analysis predicts CXCR6 - CXCL16-mediated cross-talk with renal mononuclear phagocytes, known to drive cGN progression. In line, we find that cGN is aggravated upon CXCL16 blockade. Finally, we present an optimized 5-OP-RU synthesis method which we apply to attenuating cGN in mice. In summary, we propose that CXCR6+ MAIT cells might play a protective role in cGN, implicating them as a potential target for anti-inflammatory therapies.


Assuntos
Nefropatias , Células T Invariantes Associadas à Mucosa , Humanos , Animais , Camundongos , Células Mieloides/metabolismo , Nefropatias/metabolismo , Anti-Inflamatórios/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37891013

RESUMO

Antimicrobial resistance (AMR) emerged as a significant global healthcare problem. Antibiotic use has accelerated the physiologic process of AMR, particularly in Gram-negative pathogens. Urinary tract infections (UTI) are predominantly of Gram-negative nature. Uropathogens are evolutionarily highly adapted and selected strains with specific virulence factors, suggesting common mechanisms how bacterial cells acquire virulence and AMR factors. The simultaneous increase in resistance and virulence is a complex and context-dependent phenomenon. Amongst known AMR mechanisms, the plenitude of different ß-lactamases is especially prominent. The risk for AMR in UTI varies in different patient populations. History of antibiotic consumption and physiology of urinary flow are major factors that shape AMR prevalence. The urinary tract is in close crosstalk with the microbiome of other compartments, such as the gut or the genital tracts. In addition, pharmacokinetic properties and the physiochemical composition of urinary compartments can contribute to emergence of AMR. Alternatives to antibiotic treatment and a broader approach to address bacterial infections are needed. Among the various alternatives studied, antimicrobial peptides (AMPs) and bacteriophage treatment appear to be highly promising approaches. We here summarize the present knowledge of clinical and microbiological AMR in UTI and discuss innovative approaches, namely new risk prediction tools and the use of non-antibiotic approaches to defend against uropathogenic microbes.

7.
Exp Hematol Oncol ; 12(1): 66, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501090

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.

8.
J Am Soc Nephrol ; 34(8): 1366-1380, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367205

RESUMO

SIGNIFICANCE STATEMENT: Treatment of acute, crescentic glomerulonephritis (GN) consists of unspecific and potentially toxic immunosuppression. T cells are central in the pathogenesis of GN, and various checkpoint molecules control their activation. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown potential for restraining inflammation in other T-cell-mediated disease models. To investigate its role in GN in a murine model of crescentic nephritis, the authors induced nephrotoxic nephritis in BTLA-deficient mice and wild-type mice. They found that BTLA has a renoprotective role through suppression of local Th1-driven inflammation and expansion of T regulatory cells and that administration of an agonistic anti-BTLA antibody attenuated experimental GN. These findings suggest that antibody-based modulation of BTLA may represent a treatment strategy in human glomerular disease. BACKGROUND: Modulating T-lymphocytes represents a promising targeted therapeutic option for glomerulonephritis (GN) because these cells mediate damage in various experimental and human GN types. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown its potential to restrain inflammation in other T-cell-mediated disease models. Its role in GN, however, has not been investigated. METHODS: We induced nephrotoxic nephritis (NTN), a mouse model of crescentic GN, in Btla -deficient ( BtlaKO ) mice and wild-type littermate controls and assessed disease severity using functional and histologic parameters at different time points after disease induction. Immunologic changes were comprehensively evaluated by flow cytometry, RNA sequencing, and in vitro assays for dendritic cell and T-cell function. Transfer experiments into Rag1KO mice confirmed the observed in vitro findings. In addition, we evaluated the potential of an agonistic anti-BTLA antibody to treat NTN in vivo . RESULTS: The BtlaKO mice developed aggravated NTN, driven by an increase of infiltrating renal Th1 cells. Single-cell RNA sequencing showed increased renal T-cell activation and positive regulation of the immune response. Although BTLA-deficient regulatory T cells (Tregs) exhibited preserved suppressive function in vitro and in vivo , BtlaKO T effector cells evaded Treg suppression. Administration of an agonistic anti-BTLA antibody robustly attenuated NTN by suppressing nephritogenic T effector cells and promoting Treg expansion. CONCLUSIONS: In a model of crescentic GN, BTLA signaling effectively restrained nephritogenic Th1 cells and promoted regulatory T cells. Suppression of T-cell-mediated inflammation by BTLA stimulation may prove relevant for a broad range of conditions involving acute GN.


Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Nefrite , Camundongos , Humanos , Animais , Proteínas de Checkpoint Imunológico , Glomerulonefrite/patologia , Glomerulonefrite Membranoproliferativa/complicações , Inflamação/complicações , Camundongos Endogâmicos C57BL
10.
Nat Immunol ; 24(6): 979-990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188942

RESUMO

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Assuntos
Antivirais , COVID-19 , Humanos , Calibragem , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Antígenos CD40 , Interferon-alfa , Linfócitos T CD4-Positivos
11.
Kidney Int ; 104(2): 279-292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098380

RESUMO

Urinary tract infections are common. Here, we delineate a role of extracellular DNA trap (ET) formation in kidney antibacterial defense and determine mechanisms of their formation in the hyperosmotic environment of the kidney medulla. ET of granulocytic and monocytic origin were present in the kidneys of patients with pyelonephritis along with systemically elevated citrullinated histone levels. Inhibition of the transcription coregulatory, peptidylarginine deaminase 4 (PAD4), required for ET formation, prevented kidney ET formation and promoted pyelonephritis in mice. ETs predominantly accumulated in the kidney medulla. The role of medullary sodium chloride and urea concentrations in ET formation was then investigated. Medullary-range sodium chloride, but not urea, dose-, time- and PAD4-dependently induced ET formation even in the absence of other stimuli. Moderately elevated sodium chloride promoted myeloid cell apoptosis. Sodium gluconate also promoted cell death, proposing a role for sodium ions in this process. Sodium chloride induced myeloid cell calcium influx. Calcium ion-free media or -chelation reduced sodium chloride-induced apoptosis and ET formation while bacterial lipopolysaccharide amplified it. Autologous serum improved bacterial killing in the presence of sodium chloride-induced ET. Depletion of the kidney sodium chloride gradient by loop diuretic therapy diminished kidney medullary ET formation and increased pyelonephritis severity. Thus, our data demonstrate that ETs may protect the kidney against ascending uropathogenic E. coli and delineate kidney medullary range sodium chloride concentrations as novel inducers of programmed myeloid cell death.


Assuntos
Armadilhas Extracelulares , Pielonefrite , Camundongos , Animais , Cloreto de Sódio/farmacologia , Neutrófilos , Monócitos , Cálcio , Escherichia coli , Rim , Pielonefrite/tratamento farmacológico , DNA , Ureia
12.
Sci Transl Med ; 15(687): eadd6137, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921033

RESUMO

GM-CSF in glomerulonephritisDespite glomerulonephritis being an immune-mediated disease, the contributions of individual immune cell types are not clear. To address this gap in knowledge, Paust et al. characterized pathological immune cells in samples from patients with glomerulonephritis and in samples from mice with the disease. The authors found that CD4+ T cells producing granulocyte-macrophage colony-stimulating factor (GM-CSF) licensed monocytes to promote disease by producing matrix metalloproteinase 12 and disrupting the glomerular basement membrane. Targeting GM-CSF to inhibit this axis reduced disease severity in mice, implicating this cytokine as a potential therapeutic target for patients with glomerulonephritis. -CM.


Assuntos
Glomerulonefrite , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Monócitos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Linfócitos T CD4-Positivos , Glomerulonefrite/metabolismo
13.
Autoimmun Rev ; 22(6): 103328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990133

RESUMO

Giant cell arteritis is the most common form of large vessel vasculitis and preferentially involves large and medium-sized arteries in patients over the age of 50. Aggressive wall inflammation, neoangiogenesis and consecutive remodeling processes are the hallmark of the disease. Though etiology is unknown, cellular and humoral immunopathological processes are well understood. Matrix metalloproteinase-9 mediated tissue infiltration occurs through lysis of basal membranes in adventitial vessels. CD4+ cells attain residency in immunoprotected niches, differentiate into vasculitogenic effector cells and enforce further leukotaxis. Signaling pathways involve the NOTCH1-Jagged1 pathway opening vessel infiltration, CD28 mediated T-cell overstimulation, lost PD-1/PD-L1 co-inhibition and JAK/STAT signaling in interferon dependent responses. From a humoral perspective, IL-6 represents a classical cytokine and potential Th-cell differentiator whereas interferon-γ (IFN- γ) has been shown to induce chemokine ligands. Current therapies involve glucocorticoids, tocilizumab and methotrexate application. However, new agents, most notably JAK/STAT inhibitors, PD-1 agonists and MMP-9 blocking substances, are being evaluated in ongoing clinical trials.


Assuntos
Arterite de Células Gigantes , Arterite de Takayasu , Humanos , Autoimunidade , Receptor de Morte Celular Programada 1 , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Citocinas
14.
J Hepatol ; 79(1): 150-166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870611

RESUMO

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Interleucina-10 , SARS-CoV-2 , Camundongos Transgênicos , Cirrose Hepática , Camundongos Endogâmicos C57BL
16.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107620

RESUMO

A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.


Assuntos
Linfócitos B , Antígeno B7-H1 , Fator VIII , Hemofilia A , Tolerância Imunológica , Isoanticorpos , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Fator VIII/administração & dosagem , Fator VIII/imunologia , Hemofilia A/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Modelos Animais de Doenças , Isoanticorpos/imunologia
17.
J Exp Med ; 219(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997679

RESUMO

Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-ß, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-ß-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.


Assuntos
Interferon Tipo I , Ácidos Nucleicos , Vasculite , Animais , Pulmão , Macrófagos , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases
18.
J Immunol Methods ; 507: 113310, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787393

RESUMO

Crescentic glomerulonephritis (cGN) is the most aggressive form of glomerulonephritis in humans. A widely studied mouse model is induced by sheep or rabbit antisera raised against murine renal cortical antigens. We here, report that Alpaca readily produce ample amounts of antisera that induces pathology in mice, resembling human disease regarding crescent formation, proteinuria, infiltrating immune cells and a significant Th1, but not Th17 immune response. Alpaca antiserum did not cause end-stage kidney failure, neither in a passive nor in an accelerated experimental setting, which may be advantageous for long term studies of crescentic glomerulonephritis.


Assuntos
Camelídeos Americanos , Glomerulonefrite , Animais , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Humanos , Soros Imunes , Camundongos , Camundongos Endogâmicos C57BL , Proteinúria/complicações , Coelhos , Ovinos
19.
Sci Rep ; 12(1): 5070, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332177

RESUMO

Early diagnosis of lung cancer is critically important to reduce disease severity and improve overall survival. Newer, minimally invasive biopsy procedures often fail to provide adequate specimens for accurate tumor subtyping or staging which is necessary to inform appropriate use of molecular targeted therapies and immune checkpoint inhibitors. Thus newer approaches to diagnosis and staging in early lung cancer are needed. This exploratory pilot study obtained peripheral blood samples from 139 individuals with clinically evident pulmonary nodules (benign and malignant), as well as ten healthy persons. They were divided into three cohorts: original cohort (n = 99), control cohort (n = 10), and validation cohort (n = 40). Average RNAseq sequencing of leukocytes in these samples were conducted. Subsequently, data was integrated into artificial intelligence (AI)-based computational approach with system-wide gene expression technology to develop a rapid, effective, non-invasive immune index for early diagnosis of lung cancer. An immune-related index system, IM-Index, was defined and validated for the diagnostic application. IM-Index was applied to assess the malignancies of pulmonary nodules of 109 participants (original + control cohorts) with high accuracy (AUC: 0.822 [95% CI: 0.75-0.91, p < 0.001]), and to differentiate between phases of cancer immunoediting concept (odds ratio: 1.17 [95% CI: 1.1-1.25, p < 0.001]). The predictive ability of IM-Index was validated in a validation cohort with a AUC: 0.883 (95% CI: 0.73-1.00, p < 0.001). The difference between molecular mechanisms of adenocarcinoma and squamous carcinoma histology was also determined via the IM-Index (OR: 1.2 [95% CI 1.14-1.35, p = 0.019]). In addition, a structural metabolic behavior pattern and signaling property in host immunity were found (bonferroni correction, p = 1.32e - 16). Taken together our findings indicate that this AI-based approach may be used for "Super Early" cancer diagnosis and amend the current immunotherpay for lung cancer.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Inteligência Artificial , Diagnóstico Diferencial , Detecção Precoce de Câncer , Humanos , Leucócitos/patologia , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/diagnóstico , Projetos Piloto
20.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264438

RESUMO

Anti-COVID-19 vaccination may have functional implications for immune checkpoint inhibitor treatment in patients with cancer. This study was undertaken to determine whether the safety or efficacy of anti-PD-1 therapy is reduced in patients with cancer during COVID-19 vaccination. A large multicenter observational study was conducted in 83 Chinese hospitals between January 28, 2021 and September 30, 2021. A total of 3552 patients were screened and 2048 eligible patients with cancer receiving PD-1 inhibitor treatment were recruited. All enrolled patients had received camrelizumab treatment alone or in conjunction with other cancer therapies. Among these, 1518 (74.1%) patients received the BBIBP-CorV vaccine and were defined as the vaccinated subgroup. The remaining 530 (25.9%) patients did not receive anti-COVID-19 vaccination and were defined as the non-vaccinated subgroup. For all participants, Response Evaluation Criteria in Solid Tumor and Common Terminology Criteria for Adverse Events criteria were used to evaluate the efficacy and safety of camrelizumab treatment, respectively. Propensity score match analysis with the optimal pair matching was used to compare these criteria between the vaccinated and non-vaccinated subgroups. A total of 2048 eligible patients with cancer were included (median age 59 years, 27.6% female). Most patients (98.8%) had metastatic cancer of the lung, liver or intestinal tract. Aside from the PD-1 inhibitor treatment, 55.9% of patients received additional cancer therapies. 1518 (74.1%) patients received the BBIBP-CorV vaccine with only mild side effects reported. The remaining patients did not receive COVID-19 vaccination and had a statistically greater percentage of comorbidities. After matching for age, gender, cancer stage/types, comorbidity and performance status, 1060 patients (530 pairs) were selected for propensity score match analysis. This analysis showed no significant differences in overall response rate (25.3% vs 28.9%, p=0.213) and disease control rate (64.6% vs 67.0%, p=0.437) between vaccinated and non-vaccinated subgroups. Immune-related adverse events (irAEs) were reported in both subgroups after camrelizumab treatment. Among vaccinated patients who experienced irAEs, the median interval between the first dose of camrelizumab treatment and the first vaccine shot was ≤16 days. Compared with the non-vaccinated subgroup, irAEs in vaccinated patients were more frequently reported as mild (grade 1 or 2 irAEs; 33.8% vs 19.8%, p<0.001) and these patients were less likely to discontinue the PD-1 inhibitor treatment (4.2% vs 20.4%, p<0.001). Severe irAEs (grade 3 irAE or higher) related to camrelizumab treatment were reported, however no significant differences in the frequency of such events were observed between the vaccinated and non-vaccinated subgroups. The COVID-19 vaccine, BBIBP-CorV, did not increase severe anti-PD-1-related adverse events nor did it reduce the clinical efficacy of camrelizumab in patients with cancer. Thus, we conclude that patients with cancer need not suspend anti-PD-1 treatment during COVID-19 vaccination.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , SARS-CoV-2 , Vacinas de Produtos Inativados/uso terapêutico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...